Application of dynamic tilt correction with direct measurements of rotation

Felix Bernauer Joachim Wassermann Heiner Igel

Ludwig Maximilians Universität München, Department of Earth and Environmental Sciences

5th IWGoRS Workshop, Sun Moon Lake, Taiwan
24th of September 2019
Motivation

Dynamic tilt correction is one of many applications to be applied to real 6DoF field observations.

Critical for:
- long period signals
- large rotation angles

Volcano seismology

Ocean bottom seismology

Engineering / strong motion
Dynamic tilt - A well known problem for seismology

\[\ddot{y} + 2\omega_0\zeta \dot{y} + \omega_0^2 y = -\ddot{U}_Y + \Theta_X g \] \hspace{1cm} (1)

- \(y \) displacement of seismometer mass in Y-direction
- \(U_Y \) ground displacement in Y-direction
- \(\omega_0, \zeta \) natural frequency and fraction of critical damping
- \(\Theta_X \) rotation angle around X-axis
- \(g \) gravitational acceleration

adapted from Trifunac et al. 2001
Application example

- Measurement campaign on Mt. Stromboli, Italy
- September 2018
- 3 6C stations
 - translation: 3C broadband seismometers Trillium Compact
 - rotation: 3C rotational seismometers BlueSeis3A
Application example

- example event from station TOR2
- distance source - receiver ≈ 200 m
How to correct for dynamic tilt? - Time domain

for the Y-component of the seismometer:

\[\ddot{y} + 2\omega_0 \zeta \dot{y} + \omega_0^2 y = -\ddot{U}_Y + \Theta_X g \]

add the rotation angle around the Y-axis times g to the seismometer output in acceleration sample by sample
How to correct for dynamic tilt? - Frequency domain (plain)

- $s(t)$: source of the disturbance, **tilt angle recording**
 - $r(t)$: response to the disturbance, **acceleration recording**
 - $S(f)$: Fourier transform of $s(t)$
 - $R(f)$: Fourier transform of $r(t)$
 - $G_{ss}(f)$: autospectral density of source
 - $G_{rr}(f)$: autospectral density of receiver
- coherency between source and response $\gamma_{rs}(f) \Rightarrow$ transfer function $A_{rs}(f) = \gamma_{rs}(f) \cdot \sqrt{\frac{G_{rr}(f)}{G_{ss}(f)}}$
- corrected response: $R'(f) = R(f) - A_{rs}^* S(f)$

after Crawford and Webb (2000), BSSA
How to correct for dynamic tilt? - Frequency domain (adapted)

- $s(t)$: source of the disturbance, **tilt angle recording**
 - $r(t)$: response to the disturbance, **acceleration recording**
 - $S(f)$: Fourier transform of $s(t)$
 - $R(f)$: Fourier transform of $r(t)$
 - $G_{ss}(f)$: autospectral density of source
 - $G_{rr}(f)$: autospectral density of receiver
- coherency between source and response $\gamma_{rs}(f)$
- only parts of the spectra with significant coherency are used (> 0.5)

$$|S(f)| = \begin{cases}
|S(f)| & \text{if } |\gamma_{rs}(f)| > 0.5 \\
0 & \text{otherwise}
\end{cases}$$

- corrected response: $R'(f) = R(f) - 9.81 \cdot S(f)$

Application of dynamic tilt correction with direct measurements of rotation
Application example

Application of dynamic tilt correction with direct measurements of rotation
Application example

Application of dynamic tilt correction with direct measurements of rotation
Questions

Where do the differences come from?

Which one is the best method?
Answers

Step table experiment

• reproducible laboratory experiment
• well known input

Synthetic experiment

• simulation of a VLP event in a volcanic environment
• more realistic signal
• known input and output
The step-table experiment

rotation around Y-axis introduces acceleration in X-direction!

- $\Theta_X g$ "classical" tilt contribution
- \ddot{U}_Y^{add} after correction: residual displacement
Step-table experiment - Results

Application of dynamic tilt correction with direct measurements of rotation
Application of dynamic tilt correction with direct measurements of rotation
Step-table experiment - Results in detail (adapted)

Application of dynamic tilt correction with direct measurements of rotation
Synthetic experiment - Gaussian hill geometry

Application of dynamic tilt correction with direct measurements of rotation
Synthetic experiment - The source

gaussian source-time function with:

\[
M = \begin{bmatrix}
3m_0 & 0 & 0 \\
0 & m_0 & 0 \\
0 & 0 & m_0
\end{bmatrix}
\]

\[m_0 = 1.27 \cdot 10^{13} \text{ Nm}\]

Simulated 3d seismic wave propagation with SW4 2.0*

Focus on

- acceleration in X-direction
- rotation around Y-axis

Synthetic experiment - Results (10 s - 30 s)
The time domain problem

Self-noise level of BS3A

- time domain correction adds a lot of instrument noise at low frequencies!
Conclusion / Outlook

• Dynamic tilt correction is a critical step in data analysis
• Difference in peak displacement up to 20% in our example
• Time domain method adds significant noise to seismometer data

For the future:

• not only single events but continuous data processing
• more data from

Volcano seismology Ocean bottom seismology Engineering / strong motion
Thank You!

Rerc MY
ROtational Motions in seismology